Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 1.555
Filter
1.
Current Chemistry Letters ; 12(3):567-578, 2023.
Article in English | Scopus | ID: covidwho-20245021

ABSTRACT

In the current study, the compound 4,4-dimethoxychalcone (DMC) was structurally studied and analyzed by in silico approach against Mpro to investigate its inhibitory potential. The molecular structure of the compound was confirmed by the single crystal X-ray diffraction studies. The crystal structure packing is characterized by various hydrogen bonds, C-H…π and π…π stacking. Intermolecular interactions are quantified by Hirshfeld surface analysis and the electronic structure was optimized by DFT calculations;results are in agreement with the experimental studies. Further, DMC was virtually screened against SARS-CoV-2 main protease (PDB-ID: 6LU7) using molecular docking, and molecular dynamics (MD) simulations to identify its inhibitory potential. A significant binding affinity exists between DMC and Mpro with a-6.00 kcal/mol binding energy. A MD simulation of 30ns was carried out;the results predict DMC possessing strong binding affinity and hydrogen-bonding interactions within the active site during the simulation period. Therefore, based on the results of the current investigation, it can be inferred that a DMC molecule may be able to inhibit Mpro of COVID-19. © 2023 by the authors;licensee Growing Science, Canada.

2.
Chinese Journal of Biochemistry and Molecular Biology ; 37(1):1-10, 2021.
Article in Chinese | EMBASE | ID: covidwho-20244920

ABSTRACT

COVID-19 is a severe acute respiratory syndrome caused by a novel coronavirus, SARS-CoV- 2.COVID-19 is now a pandemic, and is not yet fully under control.As the surface spike protein (S) mediates the recognition between the virus and cell membrane and the process of cell entry, it plays an important role in the course of disease transmission.The study on the S protein not only elucidates the structure and function of virus-related proteins and explains their cellular entry mechanism, but also provides valuable information for the prevention, diagnosis and treatment of COVII)-19.Concentrated on the S protein of SARS-CoV-2, this review covers four aspects: (1 ) The structure of the S protein and its binding with angiotensin converting enzyme II (ACE2) , the specific receptor of SARS-CoV-2, is introduced in detail.Compared with SARS-CoV, the receptor binding domain (RBD) of the SARS-CoV- 2 S protein has a higher affinity with ACE2, while the affinity of the entire S protein is on the contrary.(2) Currently, the cell entry mechanism of SARS-CoV-2 meditated by the S protein is proposed to include endosomal and non-endosomal pathways.With the recognition and binding between the S protein and ACE2 or after cell entry, transmembrane protease serine 2(TMPRSS2) , lysosomal cathepsin or the furin enzyme can cleave S protein at S1/S2 cleavage site, facilitating the fusion between the virus and target membrane.(3) For the progress in SARS-CoV-2 S protein antibodies, a collection of significant antibodies are introduced and compared in the fields of the target, source and type.(4) Mechanisms of therapeutic treatments for SARS-CoV-2 varied.Though the antibody and medicine treatments related to the SARS-CoV-2 S protein are of high specificity and great efficacy, the mechanism, safety, applicability and stability of some agents are still unclear and need further assessment.Therefore, to curb the pandemic, researchers in all fields need more cooperation in the development of SARS-CoV-2 antibodies and medicines to face the great challenge.Copyright © Palaeogeography (Chinese Edition).All right reserved.

3.
Beijing da xue xue bao ; Yi xue ban = Journal of Peking University. Health sciences. 54(5):907-919, 2022.
Article in Chinese | EMBASE | ID: covidwho-20242746

ABSTRACT

OBJECTIVE: Jingfang Granules have been recommended for the prevention and treatment of corona virus disease 2019 (COVID-19). Through chemical analysis and bioactivity evaluation, this study aims to elucidate the potential effective components of Jingfang Granules. METHOD(S): The inhibitory acti-vities of Jingfang Granules extract against 3-chymotrypsin-like protease (3CLpro), papain like protease (PLpro), spike protein receptor-binding domain (S-RBD) and human cyclooxygenase-2 (COX-2) were evaluated using enzyme assay. The antitussive effects were evaluated using the classical ammonia-induced cough model. The chemical constituents of Jingfang Granules were qualitatively and quantitatively analyzed by liquid chromatography-mass spectrometry (LC/MS). The 3CLpro and PLpro inhibitory activities of the major compounds were determined by enzyme assay, molecular docking, and site-directed mutagenesis. RESULT(S): Jingfang Granules exhibited 3CLpro and PLpro inhibitory activities, as well as COX-2 inhibitory and antitussive activities. By investigating the MS/MS behaviors of reference standards, a total of fifty-six compounds were characterized in Jingfang Granules. Sixteen of them were unambiguously identified by comparing with reference standards. The contents of the 16 major compounds were also determined, and their total contents were 2 498.8 mug/g. Naringin, nodakenin and neohesperidin were three dominating compounds in Jingfang Granules, and their contents were 688.8, 596.4 and 578.7 mug/g, respectively. In addition, neohesperidin and naringin exhibited PLpro inhibitory activities, and the inhibition rates at 8 mumol/L were 53.5% and 46.1%, respectively. Prim-O-glucosylcimifugin showed significant inhibitory activities against 3CLpro and PLpro, and the inhibitory rates at 8 mumol/L were 76.8% and 78.2%, respectively. Molecular docking indicated that hydrogen bonds could be formed between prim-O-glucosylcimifugin and amino acid residues H163, E166, Q192, T190 of 3CLpro (binding energy, -7.7 kcal/mol) and K157, D164, R166, E167, T301 of PLpro(-7.3 kcal/mol), respectively. Site-directed mutagenesis indicated amino acid residue K157 was a key active site for the interaction between prim-O-glucosylcimifugin and PLpro. CONCLUSION(S): Prim-O-glucosylcimifugin, neohesperidin, and naringin as the major compounds from Jingfang Granules could inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus proteases 3CLpro and PLpro. The results are valuable for rational clinical use of Jingfang Granules.

4.
Journal of Public Health in Africa ; 14(S1) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20239469

ABSTRACT

Background: The emergence of Coronavirus disease (COVID-19) has been declared a pandemic and made a medical emergency worldwide. Various attempts have been made, including optimizing effective treatments against the disease or developing a vaccine. Since the SARS-CoV-2 protease crystal structure has been discovered, searching for its inhibitors by in silico technique becomes possible. Objective(s): This study aims to virtually screen the potential of phytoconstituents from the Begonia genus as 3Cl pro-SARS-CoV- 2 inhibitors, based on its crucial role in viral replication, hence making these proteases "promising" for the anti-SARS-CoV-2 target. Method(s): In silico screening was carried out by molecular docking on the web-based program DockThor and validated by a retrospective method. Predictive binding affinity (Dock Score) was used for scoring the compounds. Further molecular dynamics on Desmond was performed to assess the complex stability. Result(s): Virtual screening protocol was valid with the area under curve value 0.913. Molecular docking revealed only beta-sitosterol-3-O-beta-D-glucopyranoside with a lower docking score of -9.712 kcal/mol than positive control of indinavir. The molecular dynamic study showed that the compound was stable for the first 30 ns simulations time with Root Mean Square Deviation <3 A, despite minor fluctuations observed at the end of simulation times. Root Mean Square Fluctuation of catalytic sites HIS41 and CYS145 was 0.756 A and 0.773 A, respectively. Conclusion(s): This result suggests that beta-sitosterol-3-O-beta-Dglucopyranoside might be a prospective metabolite compound that can be developed as anti-SARS-CoV-2.Copyright © 2023, Page Press Publications. All rights reserved.

5.
Journal of Bio-X Research ; 6(1):23-36, 2023.
Article in English | EMBASE | ID: covidwho-20237621

ABSTRACT

Objective: Although the neurological and olfactory symptoms of coronavirus disease 2019 have been identified, the neurotropic properties of the causative virus, severe acute respiratory syndrome-associated coronavirus 2 (SARS-CoV-2), remain unknown. We sought to identify the susceptible cell types and potential routes of SARS-CoV-2 entry into the central nervous system, olfactory system, and respiratory system. Method(s): We collected single-cell RNA data from normal brain and nasal epithelium specimens, along with bronchial, tracheal, and lung specimens in public datasets. The susceptible cell types that express SARS-CoV-2 entry genes were identified using single-cell RNA sequencing and the expression of the key genes at protein levels was verified by immunohistochemistry. We compared the coexpression patterns of the entry receptor angiotensin-converting enzyme 2 (ACE2) and the spike protein priming enzyme transmembrane serine protease (TMPRSS)/cathepsin L among the specimens. Result(s): The SARS-CoV-2 entry receptor ACE2 and the spike protein priming enzyme TMPRSS/cathepsin L were coexpressed by pericytes in brain tissue;this coexpression was confirmed by immunohistochemistry. In the nasal epithelium, ciliated cells and sustentacular cells exhibited strong coexpression of ACE2 and TMPRSS. Neurons and glia in the brain and nasal epithelium did not exhibit coexpression of ACE2 and TMPRSS. However, coexpression was present in ciliated cells, vascular smooth muscle cells, and fibroblasts in tracheal tissue;ciliated cells and goblet cells in bronchial tissue;and alveolar epithelium type 1 cells, AT2 cells, and ciliated cells in lung tissue. Conclusion(s): Neurological symptoms in patients with coronavirus disease 2019 could be associated with SARS-CoV-2 invasion across the blood-brain barrier via pericytes. Additionally, SARS-CoV-2-induced olfactory disorders could be the result of localized cell damage in the nasal epithelium.Copyright © Wolters Kluwer Health, Inc. All rights reserved.

6.
American Journal of Reproductive Immunology ; 89(Supplement 1):54, 2023.
Article in English | EMBASE | ID: covidwho-20236532

ABSTRACT

Cumulative data regardingCOVID-19 infection during pregnancy have demonstrated the ability of SARS-CoV-2 to infect the placenta. However, the mechanisms of SARS-CoV-2 placental viral entry are yet to be defined. SARS-CoV-2 infects cells by binding to the ACE2 receptor. However, SARS-CoV-2 cell entry also requires co-localization of spike protein cleavage by the serine protease TMPRSS2. However, the co-expression of ACE2 and TMPRSS2 in placental cells is debated, raising the question of whether potential non-canonical molecular mechanismsmay be involved in SARS-CoV-2 placental cells' viral entry. Although published data regarding the ability of the SARS-CoV- 2 to infect the fetus are contradicting, the placenta appears to be an immunological barrier to active SARS-CoV-2 infection and vertical transmission;however, the mechanism is unclear. Our experiments demonstrated the ability of the SARS-CoV-2 virus to directly infect the placenta and induce transcriptomic responses in COVID-positive mothers. These transcriptomic responses were characterized by differential expression of specific mRNAs and miRNAs associated with SARS-CoV-2 infection, with induction of specific placental miRNAs that can inhibit viral replication. Failure in such mechanisms may be associated with vertical transmission. Since the start of the COVID-19 pandemic, the COVID-19 mRNA vaccines have been widely used to reduce the morbidity and mortality of SARS-CoV-2 infection. Historically, non-live vaccines have not caused any harm to pregnant mothers;however, it is unclear whether our current understanding of the effects of non-live vaccines serves as a reliable precedent owing to the novel technology used to create these mRNA vaccines. Since there are no definitive data on the possible biodistribution of mRNA vaccines to the placenta, the likelihood of vaccine mRNA reaching the fetus remains uncertain. Little has been reported on the tissue localization of the lipid nanoparticles (LNPs) after intramuscular (IM) administration of the mRNA vaccine. The biodistribution of LNPs containing the mRNA vaccine has been investigated in animal models but not humans. In the murine model, the vaccine LNPs were rapidly disseminated to several organs, including the heart, liver, kidney, lung, and spleen, following IM administration. However, no traditional pharmacokinetic or biodistribution studies have been performed with the mRNA vaccines, including possible biodistribution to breast milk or the placenta.

7.
Letters in Drug Design and Discovery ; 20(6):699-712, 2023.
Article in English | EMBASE | ID: covidwho-20236501

ABSTRACT

Introduction: This work was devoted to an in silico investigation conducted on twenty-eight Tacrine-hydroxamate derivatives as a potential treatment for Alzheimer's disease using DFT and QSAR modeling techniques. Method(s): The data set was randomly partitioned into a training set (22 compounds) and a test set (6 compounds). Then, fourteen models were built and were used to compute the predicted pIC50 of compounds belonging to the test set. Result(s): Al built models were individualy validated using both internal and external validation methods, including the Y-Randomization test and Golbraikh and Tropsha's model acceptance criteria. Then, one model was selected for its higher R2, R2test, and Q2cv values (R2 = 0.768, R2adj = 0.713, MSE = 0.304, R2test=0.973, Q2cv = 0.615). From these outcomes, the activity of the studied compounds toward the main protease of Cholinesterase (AChEs) seems to be influenced by 4 descriptors, i.e., the total dipole moment of the molecule (mu), number of rotatable bonds (RB), molecular topology radius (MTR) and molecular topology polar surface area (MTPSA). The effect of these descriptors on the activity was studied, in particular, the increase in the total dipole moment and the topological radius of the molecule and the reduction of the rotatable bond and topology polar surface area increase the activity. Conclusion(s): Some newly designed compounds with higher AChEs inhibitory activity have been designed based on the best-proposed QSAR model. In addition, ADMET pharmacokinetic properties were carried out for the proposed compounds, the toxicity results indicate that 7 molecules are nontoxic.Copyright © 2023 Bentham Science Publishers.

8.
Mikrobiolohichnyi Zhurnal ; 85(1):36-45, 2023.
Article in English | EMBASE | ID: covidwho-20236345

ABSTRACT

Within the conditions of the ongoing COVID-19 pandemic, when many questions regarding prevention and treatment strategies remain unsolved and the search for the best antiviral agents is underway, attention should be paid to the role of trace elements zinc and selenium in increasing the body's resistance to viral infections and their direct antiviral activity against SARS-CoV-2. Experimental data show that trace elements zinc and selenium not only actthrough regulating the immune response at all levels of humoral and cellular immunity, but also can play a significant role in adjuvant therapy for viral diseases. This is especially relevant in the case of COVID-19. Studies of the direct antiviral effect of these micro-elements testify to its 3 main ways to SARS-Cov-2: I - counteraction to virus replication and its transcription through: (i) their covalent binding to the SH-group of the cysteine of the main protease M(Pro) of the virus;(ii) inhibition of its RNA polymerase activity by zinc;II - preventing the penetration of the virus into cells due to blocking SH-groups of protein disulfide isomerase (RDI) of the protein of its spikes (peplomers);III - decreasing the adsorption capacity of the virus due to the blocking of the electrostatic interaction of SARS-CoV-2 peplomers and angiotensin-converting enzyme (ACE-2) in ultra-low, uncharacteristic oxidation states (Zn+1and Se-2). The intensity of the antiviral action of these trace elements may depend on their chemical form. It was found that zinc citrate (a five-membered complex of zinc with citric acid) and monoselenium citric acid obtained with the help of nanotechnology have a greater intensity of action and higher chemical purity. Taking into account the immunostimulating and direct antiviral effect of zinc and selenium, their use in the form of pharmaceuticals and dietary supplements should be considered as adjunctive therapy for SARS-CoV-2 in patients, or as a preventive strategy for uninfected people from risk groups during the spread of COVID-19.Copyright © Publisher PH <<Akademperiodyka>> of the NAS of Ukraine, 2023.

9.
Farmakoekonomika ; 16(1):105-124, 2023.
Article in Russian | EMBASE | ID: covidwho-20236273

ABSTRACT

Background. The rapidly developing resistance of viruses to synthetic antiviral drugs indicates the need to use substances with multitarget action (to avoid polypharmacy and to improve the safety of treatment). Objective(s): systematic analysis of the scientific literature on the pharmacology of bioflavonoids with an emphasis on their antiviral action. Material and methods. More than 150,000 references of primary sources were found in the PubMed/MEDLINE database of biomedical publications, including 3282 references on the antiviral effects of bioflavonoids. A systematic computerized analysis of this array of publications was carried out in order to identify the main directions in the pharmacology of bioflavonoids with an emphasis on their antiviral, antibacterial and immunomodulatory effects. The literature analysis was carried out using modern methods of topological and metric analysis of big data. Results. The molecular mechanisms of action of baicalin, hesperidin, rutin, quercetin, leukodelphinidin bioflavonoids and epigallocatechin-3gallate, curcumin polyphenols, their anti-inflammatory, antioxidant, antiviral, bactericidal, angioprotective, regenerative effects, and their prospects in therapy, prevention and rehabilitation of patients with COVID-19 and other respiratory viral infections were described in detail. Conclusion. Bioflavonoids and synergistic polyphenols exhibit not only multitarget antiviral effects by inhibiting the main protease, spike proteins, and other target proteins, but also pronounced anti-inflammatory, hepatoprotective, and immunomodulatory effects.Copyright © 2023 Modern Medical Technology. All rights reserved.

10.
Indian Journal of Novel Drug Delivery ; 14(2):111-116, 2022.
Article in English | EMBASE | ID: covidwho-20235186

ABSTRACT

The novel corona virus whose outbreak took place in December 2019 continues to spread at a rapid rate worldwide. The Main protease (Mpro) plays critical role in the SARS-CoV-2 life cycle through virus replication and transcription process making it as an attractive drug target. Herein, molecular docking study followed by drug-Likeness prediction, were performed in order to identify new potent Mpro inhibitors. Indeed, molecular docking of 1880 compounds into the Mpro active site reveals compounds S1 and S2 as promising inhibitors of this enzyme with binding energy of -39,22 KJ/mol, -36.27 KJ/mol respectively. These two compounds were also predicted to have satisfying drug likeness properties, indicating that they might be promising lead compounds for further anti-SARS CoV-2 drug research.Copyright © KESS All rights reserved.

11.
Nat Prod Res ; : 1-4, 2022 Dec 30.
Article in English | MEDLINE | ID: covidwho-20245396

ABSTRACT

Potentilla kleiniana Wight et Arn(PK, 'Wu Pi Feng' in Chinese) was recorded as Miao ethnic medicine for treatment of fever, cough, ulcer, and erysipelas for thousands years. This study aimed to evaluate the antiviral activity of four PK extracts and seven compounds by using HIV-1 protease (HIV-1 PR). In addition, Ultra-High Performance Liquid Chromatography and High Resolution Mass Spectrometry (UPLC-HRMS) was employed to identify the bioactive components. The toxicity assessment of the extracts was done before antiviral screening using a highly specific human aspartyl protease, renin protease by fluorimetric method. As a result, seven compounds and four extracts of PK inhibited HIV-1 PR with IC50 range from 0.009 to 0.36 mg/mL, and did not appreciably inhibit the general human protease renin. This study first demonstrated that four PK extracts, ellagic acid and ursolic acid potent inhibit HIV-1 protease, could be used as an efficacious drug candidate to treat SARS-CoV-2 infection.

12.
Int J Mol Sci ; 24(10)2023 May 11.
Article in English | MEDLINE | ID: covidwho-20244460

ABSTRACT

The papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a critical role in the proteolytic processing of viral polyproteins and the dysregulation of the host immune response, providing a promising therapeutic target. Here, we report the structure-guide design of novel peptidomimetic inhibitors covalently targeting SARS-CoV-2 PLpro. The resulting inhibitors demonstrate submicromolar potency in the enzymatic assay (IC50 = 0.23 µM) and significant inhibition of SARS-CoV-2 PLpro in the HEK293T cells using a cell-based protease assay (EC50 = 3.61 µM). Moreover, an X-ray crystal structure of SARS-CoV-2 PLpro in complex with compound 2 confirms the covalent binding of the inhibitor to the catalytic residue cysteine 111 (C111) and emphasizes the importance of interactions with tyrosine 268 (Y268). Together, our findings reveal a new scaffold of SARS-CoV-2 PLpro inhibitors and provide an attractive starting point for further optimization.


Subject(s)
COVID-19 , Peptidomimetics , Humans , Peptidomimetics/pharmacology , HEK293 Cells , SARS-CoV-2 , Peptide Hydrolases , Protease Inhibitors/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
13.
Molecules ; 28(11)2023 May 31.
Article in English | MEDLINE | ID: covidwho-20243613

ABSTRACT

Scutellaria barbata D. Don (SB, Chinese: Ban Zhi Lian), a well-known medicinal plant used in traditional Chinese medicine, is rich in flavonoids. It possesses antitumor, anti-inflammatory, and antiviral activities. In this study, we evaluated the inhibitory activities of SB extracts and its active components against HIV-1 protease (HIV-1 PR) and SARS-CoV2 viral cathepsin L protease (Cat L PR). UPLC/HRMS was used to identify and quantify the major active flavonoids in different SB extracts, and fluorescence resonance energy transfer (FRET) assays were used to determine HIV-1 PR and Cat L PR inhibitions and identify structure-activity relationships. Molecular docking was also performed, to explore the diversification in bonding patterns of the active flavonoids upon binding to the two PRs. Three SB extracts (SBW, SB30, and SB60) and nine flavonoids inhibited HIV-1 PR with an IC50 range from 0.006 to 0.83 mg/mL. Six of the flavonoids showed 10~37.6% inhibition of Cat L PR at a concentration of 0.1 mg/mL. The results showed that the introduction of the 4'-hydroxyl and 6-hydroxyl/methoxy groups was essential in the 5,6,7-trihydroxyl and 5,7,4'-trihydroxyl flavones, respectively, to enhance their dual anti-PR activities. Hence, the 5,6,7,4'-tetrahydroxyl flavone scutellarein (HIV-1 PR, IC50 = 0.068 mg/mL; Cat L PR, IC50 = 0.43 mg/mL) may serve as a lead compound to develop more effective dual protease inhibitors. The 5,7,3',4'-tetrahydroxyl flavone luteolin also showed a potent and selective inhibition of HIV-1 PR (IC50 = 0.039 mg/mL).


Subject(s)
COVID-19 , HIV-1 , Scutellaria , Plant Extracts/chemistry , Flavonoids/pharmacology , Peptide Hydrolases , Scutellaria/chemistry , Cathepsin L , Molecular Docking Simulation , RNA, Viral , SARS-CoV-2 , Endopeptidases , Structure-Activity Relationship
14.
Cureus ; 15(1): e33831, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-20235790

ABSTRACT

Paxlovid (nirmatrelvir/ritonavir) is a game changer in the fight against COVID-19 due to its ease of administration and significant benefits of reducing progression to severe COVID-19, hospitalization, and death. Cardiac adverse events such as bradycardia and syncope are not known with this medication. We report a case of a 71-year-old patient who developed symptomatic bradycardia, syncopal episodes, and sinus pause after taking Paxlovid. Discontinuing medication and intravenous atropine helped to reverse the bradycardia and symptoms promptly. She did not require a pacemaker. We would like to report this possible association between Paxlovid and bradycardia. Until further information or studies are available, it is advised to promptly discontinue Paxlovid after any evidence of bradycardia and closely monitor for at least 40 hours in a hospital setting. The reported half-life (t 1/2) of the medication is 6.05 ± 1.79 hours and using 8 hours as a reference for the upper limit of t 1/2, around 97 % of the medication should be cleared off in about 40 hours (five half-lives).

15.
Viruses ; 15(5)2023 05 08.
Article in English | MEDLINE | ID: covidwho-20235357

ABSTRACT

BACKGROUND: Since limited data are available, we aimed to compare the efficacy and durability of dolutegravir and darunavir in advanced naïve patients. METHODS: Retrospective multicenter study including AIDS- or late-presenting (def. CD4 ≤ 200/µL) HIV-infected patients starting dolutegravir or ritonavir/cobicistat-boosted darunavir+2NRTIs. Patients were followed from the date of first-line therapy initiation (baseline, BL) to the discontinuation of darunavir or dolutegravir, or for a maximum of 36 months of follow-up. RESULTS: Overall 308 patients (79.2% males, median age 43 years, 40.3% AIDS-presenters, median CD4 66 cells/µL) were enrolled; 181 (58.8%) and 127 (41.2%) were treated with dolutegravir and darunavir, respectively. Incidence of treatment discontinuation (TD), virological failure (VF, defined as a single HIV-RNA > 1000 cp/mL or two consecutive HIV-RNA > 50 cp/mL after 6 months of therapy or after virological suppression had been achieved), treatment failure (the first of TD or VF), and optimal immunological recovery (defined as CD4 ≥ 500/µL + CD4 ≥ 30% + CD4/CD8 ≥ 1) were 21.9, 5.2, 25.6 and 1.4 per 100 person-years of follow-up, respectively, without significant differences between dolutegravir and darunavir (p > 0.05 for all outcomes). However, a higher estimated probability of TD for central nervous system (CNS) toxicity (at 36 months: 11.7% vs. 0%, p = 0.002) was observed for dolutegravir, whereas darunavir showed a higher probability of TD for simplification (at 36 months: 21.3% vs. 5.7%, p = 0.046). CONCLUSIONS: Dolutegravir and darunavir showed similar efficacy in AIDS- and late-presenting patients. A higher risk of TD due to CNS toxicity was observed with dolutegravir, and a higher probability of treatment simplification with darunavir.


Subject(s)
Acquired Immunodeficiency Syndrome , Anti-HIV Agents , HIV Infections , Male , Humans , Adult , Female , Darunavir/therapeutic use , HIV Infections/drug therapy , Acquired Immunodeficiency Syndrome/drug therapy , Heterocyclic Compounds, 3-Ring/adverse effects , RNA , Anti-HIV Agents/adverse effects , Viral Load
16.
J Biomol Struct Dyn ; : 1-12, 2022 May 05.
Article in English | MEDLINE | ID: covidwho-20232244

ABSTRACT

The coronavirus disease (COVID-19) pandemic has rapidly extended globally and killed approximately 5.83 million people all over the world. But, to date, no effective therapeutic against the disease has been developed. The disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and enters the host cell through the spike glycoprotein (S protein) of the virus. Subsequently, RNA-dependent RNA polymerase (RdRp) and main protease (Mpro) of the virus mediate viral transcription and replication. Mechanistically inhibition of these proteins can hinder the transcription as well as replication of the virus. Recently oxysterols and its derivative, such as 25 (S)-hydroxycholesterol (25-HC) has shown antiviral activity against SARS-CoV-2. But the exact mechanisms and their impact on RdRp and Mpro have not been explored yet. Therefore, the study aimed to identify the inhibitory activity of 25-HC against the viral enzymes RdRp and Mpro simultaneously. Initially, a molecular docking simulation was carried out to evaluate the binding activity of the compound against the two proteins. The pharmacokinetics (PK) and toxicity parameters were analyzed to observe the 'drug-likeness' properties of the compound. Additionally, molecular dynamics (MD) simulation was performed to confirm the binding stability of the compound to the targeted protein. Furthermore, molecular mechanics generalized Born surface area (MM-GBSA) was used to predict the binding free energies of the compound to the targeted protein. Molecular docking simulation identified low glide energy -51.0 kcal/mol and -35.0 kcal/mol score against the RdRp and Mpro, respectively, where MD simulation found good binding stability of the compound to the targeted proteins. In addition, the MM/GBSA approach identified a good value of binding free energies (ΔG bind) of the compound to the targeted proteins. Therefore, the study concludes that the compound 25-HC could be developed as a treatment and/or prevention option for SARS-CoV-2 disease-related complications. Although, experimental validation is suggested for further evaluation of the work.Communicated by Ramaswamy H. Sarma.

17.
Nat Prod Res ; : 1-10, 2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-20241534

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or 2019-nCoV), is a life-threatening infectious condition. Acute lung injury is a common complication in patients with COVID-19. 3-chymotrypsin-like protease (3CLpro) of 2019-nCoV and neutrophil elastase are critical targets of COVID-19 and acute lung injury, respectively. Colchicine and magnolol are reported to exert inhibitory effects on inflammatory response, the severe comorbidity in both COVID-19 and acute lung injury. We thus designed and synthesized a series of novel colchicine-magnolol hybrids based on a two-step synthetic sequence. It was found that these novel hybrids provided unexpected inhibition on 3CLpro and neutrophil elastase, a bioactivity that colchicine and magnolol did not possess. These findings not only provide perquisites for further in vitro and in vivo investigation to confirm the therapeutic potentiality of novel colchicine-magnolol hybrids, but also suggest that the concurrent inhibition of 3CLpro and neutrophil elastase may enable novel colchicine-magnolol hybrids as effective multi-target drug compounds.

18.
Nat Prod Res ; : 1-9, 2022 Feb 19.
Article in English | MEDLINE | ID: covidwho-20241290

ABSTRACT

Phytochemical investigation of the whole plants of Vernonia gratiosa Hance. led in the isolation and identification of two new stigmastane-type steroidal glucosides (1-2), namely vernogratiosides A (1), and B (2). Their chemical structures were fully elucidated based on 1 D/2D NMR spectroscopic, HR-ESI-MS data analyses, and by producing derivatives by chemical reactions. The binding potential of the isolated compounds to replicase protein - main protease of SARS-CoV-2 were examined using the molecular docking simulations. Our results show that the isolated steroidal glucosides (1-2) bind to the substrate-binding site of SARS-CoV-2 main protease with binding affinities of -7.2 and -7.6 kcal/mol, respectively, as well as binding abilities equivalent to N3 inhibitor that has already been reported (-7.5 kcal/mol).

19.
Viruses ; 15(5)2023 04 27.
Article in English | MEDLINE | ID: covidwho-20242499

ABSTRACT

Early detection and characterization of new variants and their impacts enable improved genomic surveillance. This study aims to evaluate the subvariant distribution of Omicron strains isolated from Turkish cases to determine the rate of antiviral resistance of RdRp and 3CLpro inhibitors. The Stanford University Coronavirus Antiviral & Resistance Database online tool was used for variant analyses of the strains uploaded to GISAID as Omicron (n = 20.959) between January 2021 and February,2023. Out of 288 different Omicron subvariants, B.1, BA.1, BA.2, BA.4, BE.1, BF.1, BM.1, BN.1, BQ.1, CK.1, CL.1, and XBB.1 were the main determined subvariants, and BA.1 (34.7%), BA.2 (30.8%), and BA.5 (23.6%) were reported most frequently. RdRp and 3CLPro-related resistance mutations were determined in n = 150, 0.72% sequences, while the rates of resistance against RdRp and 3CLpro inhibitors were reported at 0.1% and 0.6%, respectively. Mutations that were previously associated with a reduced susceptibility to remdesivir, nirmatrelvir/r, and ensitrelvir were most frequently detected in BA.2 (51.3%). The mutations detected at the highest rate were A449A/D/G/V (10.5%), T21I (10%), and L50L/F/I/V (6%). Our findings suggest that continuous monitoring of variants, due to the diversity of Omicron lineages, is necessary for global risk assessment. Although drug-resistant mutations do not pose a threat, the tracking of drug mutations will be necessary due to variant heterogenicity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Molecular Epidemiology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , RNA-Dependent RNA Polymerase
20.
Int J Mol Sci ; 24(11)2023 May 24.
Article in English | MEDLINE | ID: covidwho-20241072

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has caused more than six million deaths worldwide since 2019. Although vaccines are available, novel variants of coronavirus are expected to appear continuously, and there is a need for a more effective remedy for coronavirus disease. In this report, we isolated eupatin from Inula japonica flowers and showed that it inhibits the coronavirus 3 chymotrypsin-like (3CL) protease as well as viral replication. We showed that eupatin treatment inhibits SARS-CoV-2 3CL-protease, and computational modeling demonstrated that it interacts with key residues of 3CL-protease. Further, the treatment decreased the number of plaques formed by human coronavirus OC43 (HCoV-OC43) infection and decreased viral protein and RNA levels in the media. These results indicate that eupatin inhibits coronavirus replication.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Peptide Hydrolases , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Flavonoids/pharmacology , Endopeptidases , Antiviral Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL